Constitutive endocytosis of GABAA receptors by an association with the adaptin AP2 complex modulates inhibitory synaptic currents in hippocampal neurons.

نویسندگان

  • J T Kittler
  • P Delmas
  • J N Jovanovic
  • D A Brown
  • T G Smart
  • S J Moss
چکیده

Type A GABA receptors (GABA(A)) mediate the majority of fast synaptic inhibition in the brain and are believed to be predominantly composed of alpha, beta, and gamma subunits. Although changes in cell surface GABA(A) receptor number have been postulated to be of importance in modulating inhibitory synaptic transmission, little is currently known on the mechanism used by neurons to modify surface receptor levels at inhibitory synapses. To address this issue, we have studied the cell surface expression and maintenance of GABA(A) receptors. Here we show that constitutive internalization of GABA(A) receptors in hippocampal neurons and recombinant receptors expressed in A293 cells is mediated by clathrin-dependent endocytosis. Furthermore, we identify an interaction between the GABA(A) receptor beta and gamma subunits with the adaptin complex AP2, which is critical for the recruitment of integral membrane proteins into clathrin-coated pits. GABA(A) receptors also colocalize with AP2 in cultured hippocampal neurons. Finally, blocking clathrin-dependant endocytosis with a peptide that disrupts the association between amphiphysin and dynamin causes a large sustained increase in the amplitude of miniature IPSCs in cultured hippocampal neurons. These results suggest that GABA(A) receptors cycle between the synaptic membrane and intracellular sites, and their association with AP2 followed by recruitment into clathrin-coated pits represents an important mechanism in the postsynaptic modulation of inhibitory synaptic transmission.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synaptic GABAA receptors are directly recruited from their extrasynaptic counterparts.

GABAA receptors mediate the majority of fast synaptic inhibition in the brain. The accumulation of these ligand-gated ion channels at synaptic sites is a prerequisite for neuronal inhibition, but the molecular mechanisms underlying this phenomenon remain obscure. To further understand these processes, we have examined the cellular origins of synaptic GABAA receptors. To do so, we have created f...

متن کامل

Endocytosis of GABAB receptors modulates membrane excitability in the single-celled organism Paramecium.

GABAB receptors modulate swimming behavior in Paramecium by inhibiting dihydropyridine-sensitive Ca2+ channels via G-proteins. Prolonged occupancy of GABAB receptors by baclofen results in a decrease in GABAB receptor functions. Since changes in the number of cell-surface GABAA receptors have been postulated to be of importance in modulating inhibitory synaptic transmission in neurons, we have ...

متن کامل

Phospho-dependent binding of the clathrin AP2 adaptor complex to GABAA receptors regulates the efficacy of inhibitory synaptic transmission.

The efficacy of synaptic inhibition depends on the number of gamma-aminobutyric acid type A receptors (GABA(A)Rs) expressed on the cell surface of neurons. The clathrin adaptor protein 2 (AP2) complex is a critical regulator of GABA(A)R endocytosis and, hence, surface receptor number. Here, we identify a previously uncharacterized atypical AP2 binding motif conserved within the intracellular do...

متن کامل

Dopamine D3 receptors regulate GABAA receptor function through a phospho-dependent endocytosis mechanism in nucleus accumbens.

The dopamine D3 receptor, which is highly enriched in nucleus accumbens (NAc), has been suggested to play an important role in reinforcement and reward. To understand the potential cellular mechanism underlying D3 receptor functions, we examined the effect of D3 receptor activation on GABAA receptor (GABAAR)-mediated current and inhibitory synaptic transmission in medium spiny neurons of NAc. A...

متن کامل

Tonically active GABAA receptors in hippocampal pyramidal neurons exhibit constitutive GABA-independent gating.

Phasic and tonic inhibitory currents of hippocampal pyramidal neurons exhibit distinct pharmacological properties. Picrotoxin and bicuculline methiodide inhibited both components, consistent with a role for GABAA receptors; however, gabazine, at a concentration that abolished miniature GABAergic inhibitory postsynaptic currents and responses to exogenous GABA, had no effect on tonic currents. B...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 20 21  شماره 

صفحات  -

تاریخ انتشار 2000